解下列所有問題，並詳細寫計算過程與說明。不需依題號順序作答，但請標示所給之解所對應之題號。下列問題中將使用符號:

\(\mathbb{R} \) = the set of all real numbers; \(e \) = the base of the natural exponential function.

1. Let \(f(x, y, z) \) be a differentiable real valued function of three real variables with the first partial derivatives \(f_x(-4, 3, 2) = -1, f_y(-4, 3, 2) = 3 \) and \(f_z(-4, 3, 2) = -2 \). Let

\[g(u, v) = f(uv, \sqrt{1 + u^2 + v^2}, 3u + 2v) \quad \text{for} \quad u, v \in \mathbb{R}. \]

Evaluate the first partial derivative \(\frac{\partial g}{\partial u}(2, -2). \) (6 分)

2. Let \(f(x, y) \) be a differentiable real valued function of two real variables, and let \(\alpha(t) \) and \(\beta(t) \) be differentiable curves lying on the graph of \(f \) with \(\alpha(0) = \beta(0) = (a, b, f(a, b)) \), where \(a, b \in \mathbb{R} \). Assume that \(\alpha'(0) = (4, 5, 3) \) and \(\beta'(0) = (2, 3, 2) \). Evaluate the first partial derivatives \(f_x(a, b) \) and \(f_y(a, b) \).

(6 分)

3. Let \(f(x) = (x^2 - 2x + 4)^{-1} \) for \(x \in \mathbb{R} \). Evaluate the 6-th order derivative \(f^{(6)}(1) \) of \(f \) at 1.

(8 分)

4. Let \(f(x) = \int_0^{-\frac{x}{1+3x^2}} (\frac{1}{e^{x^2}} - 1) \, dt \) for \(x \in \mathbb{R} \). Evaluate \(\lim_{x \to 0} \frac{f(x)}{x^2 + 2 \cos x - 2} \)

(8 分)

5. Evaluate the following integrals:

(a) \(\int_0^1 \frac{1 + x}{1 + \sqrt[3]{x}} \, dx \) (6 分)

(b) \(\int_0^{\sqrt{\frac{1}{2}}} \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \, dx \) (8 分)

6. Evaluate the following iterated integrals:

(a) \(\int_0^1 \int_0^\pi x^2 \sin(xy) \, dx \, dy \) (8 分)

(b) \(\int_0^1 \int_x^1 \frac{y}{1 + y^6} \, dy \, dx \) (8 分)

(c) \(\int_0^{\frac{1}{2}} \int_y^{\sqrt{1-y^2}} \frac{xy}{1 + x^2 + y^2} \, dx \, dy \) (8 分)

7. Evaluate the triple integral \(\iiint_{\Omega} x^2 \, dV \), where

\[\Omega = \{(x, y, z) : 0 \leq z \leq \min(\sqrt[3]{3(x^2 + y^2)}, \sqrt{4 - x^2 - y^2}) \text{ and } 0 \leq y \leq x \} \]

(10 分)

8. Let \(f(x, y) = 2x^2 + y^2 \) for \(x, y \in \mathbb{R} \). Find the absolute extrema of \(f \) subject to the constraint \(2x^2 - \sqrt{2}xy + y^2 = 1 \).

(12 分)

9. For every integer \(n > 0 \), let \(a_n = \frac{\ln(n+8)}{\sqrt{n+8}} \). Find the interval of convergence of the power series \(\sum_{n=1}^{\infty} a_n(3-x)^n \).

(12 分)
1. (10%) Two forces of magnitude 50 N, as shown in the figure below, act on a cylinder of radius 4 m and mass 6.25 kg. The cylinder, which is initially at rest, sits on a frictionless surface. After 1 second, the velocity and angular velocity of the cylinder in m/s and rad/s are respectively. (a) \(v = 0; \omega = 0 \); (b) \(v = 0; \omega = 4 \); (c) \(v = 0; \omega = 8 \); (d) \(v = 8; \omega = 8 \); (e) \(v = 16; \omega = 8 \).

2. (10%) A 2.5-kg object suspended from the ceiling by a string that has a length of 2.5 m is released from rest with the string 40° below the horizontal position. What is the tension in the string at the instant when the object passes through its lowest position? (a) 11N; (b) 25N; (c) 42N; (d) 18N; (e) 32N

3. (10%) A wheel rotates about a fixed axis with a constant angular acceleration of 4.0 rad/s². The diameter of the wheel is 40 cm. What is the linear speed of a point on the rim of this wheel at an instant when that point has a total linear acceleration with a magnitude of 1.2 m/s²? (a) 39 cm/s; (b) 42 cm/s; (c) 45 cm/s; (d) 35 cm/s; (e) 53 cm/s

4. (10%) A solid sphere, spherical shell, solid cylinder and a cylindrical shell all have the same mass \(m \) and radius \(R \). If they are all released from rest at the same elevation and roll without slipping, which reaches the bottom of an inclined plane first? (a) solid sphere; (b) spherical shell; (c) solid cylinder; (d) cylindrical shell; (e) all take the same time

5. (10%) An ideal gas is allowed to undergo a free expansion. If its initial volume is \(V_1 \) and its final volume is \(V_2 \), the change in entropy is (a) \(nR \ln(V_2 / V_1) \); (b) \(nRT \ln(V_2 / V_1) \); (c) \(nk \ln(V_2 / V_1) \); (d) 0; (e) \(nR V_2 / V_1 \).

6. (10%) The open switch in Figure 2 is thrown closed at \(t = 0 \). Before the switch is closed, the capacitor is uncharged and all currents are zero. Determine the currents in \(L, C, \) and \(R \), the emf across \(L \), and the potential differences across \(C \) and \(R \) (a) at the instant after the switch is closed (5%) and (b) long after it is closed (5%).

7. (10%) Consider the hemispherical closed surface in Figure 3. The hemisphere is in a uniform magnetic field that makes an angle \(\theta \) with the vertical. Calculate the magnetic flux through the hemispherical surface \(S_2 \).
8. (15%) Two blocks of mass m_1 and m_2 are connected by a massless string over a pulley in the shape of a solid disk having radius R and mass M. The fixed, wedge-shaped ramp makes an angle of θ as shown in Fig. 4. The coefficient of kinetic friction is μ_k for both blocks. (a) Draw force diagrams of both blocks and of the pulley. (5%) Determine (b) acceleration of the two blocks (5%) and (c) the tensions in the string on both sides of the pulley. (5%)

9. (15%) A conducting bar of length l rotates with a constant angular speed ω about a pivot at one end. A uniform magnetic field \mathbf{B} is directed perpendicular to the plane of rotation as in Fig. 5. Find the emf induced between the ends of the bar. Point out which one is high potential end, O or P sides.